Europium Tetracycline (EuTc) EuTc-Hydrogen Peroxide Assay

(version A3)

Catalog No. 15003

Active Motif North America

 1914 Palomar Oaks Way, Suite 150

 Carlsbad, California 92008, USA

 Toll free:
 877 222 9543

 Telephone:
 760 431 1263

 Fax:
 760 431 1351

Active Motif Europe

 104 Avenue Franklin Roosevelt

 B-1330 Rixensart, Belgium

 UK Free Phone:
 0800 169 31 47

 France Free Phone:
 0800 90 99 79

 Germany Free Phone:
 0800 181 99 10

 Telephone:
 +32 (0)2 653 0001

 Fax:
 +32 (0)2 653 0050

Active Motif Japan

Azuma Bldg, 7th Floor 2-21 Ageba-Cho, Shinjuku-Ku Tokyo, 162-0824, Japan Telephone: +81 3 5225 3638 Fax: +81 3 5261 8733

Copyright 2009 Active Motif, Inc.

Information in this manual is subject to change without notice and does not constitute a commitment on the part of Active Motif, Inc. It is supplied on an "as is" basis without any warranty of any kind, either explicit or implied. Information may be changed or updated in this manual at any time.

This documentation may not be copied, transferred, reproduced, disclosed, or duplicated, in whole or in part, without the prior written consent of Active Motif, Inc. This documentation is proprietary information and protected by the copyright laws of the United States and international treaties.

The manufacturer of this documentation is Active Motif, Inc.

© 2009 Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150; Carlsbad, CA 92008. All rights reserved.

All trademarks, trade names, service marks or logos referenced herein belong to their respective companies.

TABLE OF CONTENTS

Introduction1
Assay Principle and Performance2
Components and Storage
Protocols
A. Buffer Preparation and Recommendations4
B. Cuvette Assay
C. 96-well Microplate Assay5
Appendix
Section A. Troubleshooting Guide6
Section B. Related Products
Technical Services

Introduction

Hydrogen peroxide (H_2O_2) is a reactive metabolic by-product that is a key regulator in a number of oxidative stress-related states. Functioning through NFKB and other factors, hydroperoxide-mediated pathways have been linked to asthma, atherosclerosis, diabetic vasculopathy, osteo-porosis, a number of neurodegenerative diseases and Down's syndrome. Due to its implication in these many disease states, there is much interest in sensitive assays to monitor hydrogen peroxide in biochemical, clinical, as well as in environmental samples. In addition, there is much research on the enzymes that produce and eliminate hydrogen peroxide, and on their inhibitors.

Active Motif's EuTc-Hydrogen Peroxide Assay is based on a novel fluorescent reagent that is used to detect free or enzymatically produced H_2O_2 . Europium Tetracycline (EuTc) detects hydrogen peroxide in a fast and easy method, and without the need for additional enhancer solutions. This makes EuTc a sensitive reagent to monitor catalases, peroxidases or glucose-oxidase activities through *in vitro* enzymatic assays, or to study substances that inhibit or activate these enzymes. The main advantages of using EuTc for luminescent peroxide detection are:

- Fast, 10-minute incubation time
- Applicable to turbid samples
- Functions at neutral pH
- No need for enzymatic amplification
- Large Stoke's shift decreases interference of background fluorescence
- Long decay time enables time-resolved, or time-gated, measurement

product	format	catalog no.
EuTc	1000 rxns*	15003

*Sufficient EuTc is provided for 1000 rxns performed in 96-well plates, or 100 rxns in cuvettes.

The EuTc-H₂O₂ Assay is for research use only. Not for use in diagnostic procedures.

Assay Principles and Performance

Europium tetracycline (EuTc) alone is weakly fluorescent. But, it combines rapidly with free H_2O_2 to form a EuTc- H_2O_2 complex that is 15-fold brighter than EuTc alone (Figure 1) Thus, the basic principle of EuTc assays is based upon the following equilibrium:

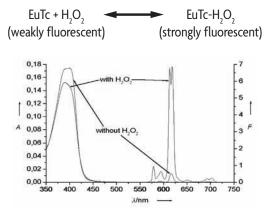


Figure 1: Absorption and emission spectra of EuTc before and after addition of hydrogen peroxide.

In addition to measuring H_2O_2 levels via the increase in fluorescent intensity, EuTc makes it possible to measure the change in decay time (lifetime) of the EuTc- H_2O_2 complex (Table 1). The use of lifetime-based measurement has significant advantages when measuring hydrogen peroxide levels in biological fluids as such samples typically have high levels of auto-fluorescence that can interfere with intensity-based measurements. Because the EuTc- H_2O_2 signal is relatively long lived, lifetime measurement can completely eliminate any background contributed by the light source, the biological sample (typically -0.1-10 ns) or by free EuTc.

Dye Complex	Absorption (nm)	Emission (nm)	Time (µs)
EuTc	406	617	30
EuTc-H ₂ O ₂	406	617	60

Table 1: Lifetime measurements of free and peroxide-bound EuTc.

Assay time: 30 minutes.

Detection limit: 0.96 μ M of H₂O₂.

Interferences: Phosphate and citrate cause an increase in fluorescence intensity of EuTc and may interfere with the increase in fluorescence caused by EuTc- H_2O_2 -complex formation. Detergents should also be avoided as they can interfere with the EuTc reagent.

Components and Storage

EuTc is supplied as a dry powder that can be stored at room temperature. After resuspension, it should be stored at -4°C in the dark.

Reagents	Quantity	Storage / Stability
EuTc reagent	1000 rxns	Room Temp for 6 months

Additional materials required for both 96-well plate and cuvette assays

- 1 ml of 30% H₂O₂
- Distilled water

Additional materials required for 96-well plate assays only

- 6 x 1 ml reaction tubes
- Reaction tubes, 2 ml minimum
- Fluorescence microplate reader, excitation of 395-405 nm / emission of 617 nm

Additional materials required for cuvette assays only

- 6 x 10 ml glass flasks
- Reaction tubes, 2 ml minimum
- Cuvettes
- Fluorescence reader, excitation of 395-405 nm / emission of 617 nm

A. Buffer Preparation and Recommendations

Preparation of Solution A (EuTc Working Solution)

- Dissolve the entire amount of the supplied EuTc in 100 ml of distilled water.
- Its absorbance at 405 nm is ~0.76 per cm.
- Store the EuTc Working Solution at 4°C in the dark.
- EuTc Working Solution is stable for one month if kept in the dark.

Preparation of H₂O₂ Stock Solution

- Add 810 μl of 30% hydrogen peroxide into a final volume of 10 ml distilled water.
- H,O, Stock Solution is stable for one month when kept at 4°C

Preparation of Solution B (400 µM hydrogen peroxide standard)

- Add 50 µl of H₂O₂ Stock Solution (prepared above) into a final volume of 100 ml distilled H₂O.
- Solution B should be prepared freshly for each new experiment.

B. Cuvette Assay

Preparation of the Calibration Graph

1. Make 6 dilutions of Solution B in distilled water in 10 ml flasks at room temperature:

Reagent	1 (400 µM)	2 (320 μM)	3 (200 μM)	4 (80 µM)	5 (40 µM)	6 (20 μM)
Solution B	10 ml	8 ml	5 ml	2 ml	1 ml	0.5 ml
dH ₂ 0	0 ml	2 ml	5 ml82 ml	1 ml	9 ml	9.5 ml
Total Volume	10 ml	10 ml	10 ml	10 ml	10 ml	10 ml

- 2. Add 1 ml each of the diluted solutions to a 2 ml reaction tube. Work at least in duplicates.
- 3. Add 1 ml of Solution A to each tube, mix by pipetting up and down, then incubate for 10 minutes at room temperature.
- 4. In a separate tube, mix 1 ml of distilled water with 1 ml of Solution A for use as a blank.
- Pipette each reaction mix into a cuvette and measure the luminescence intensity against the blank. Choose an excitation wavelength of 395-405 nm and an emission wavelength of 617 nm (at 8-10 nm bandwidth).
- 6. Calculate the average value for the duplicate measurements, then plot the fluorescence intensity (or relative increase in fluorescence intensity) versus the concentration of H₂O₂.

Determination of H₂O₂ Concentrations in Samples

- Mix 1 ml of aqueous sample containing 0.1-10 mg/ml of H₂O₂ with 1 ml of Solution A in a 2 ml reaction tube and incubate for 10 minutes at room temperature. As phosphate buffer can cause high background, we recommend samples in phosphate-free buffers like MOPs.
- 2. Pipette each solution into a cuvette and measure the luminescence as described above.
- 3. Use the Calibration Graph prepared above and the measured luminescence to determine the concentration of H₂O₂ for each sample.

C. 96-well Microplate Assay

Preparation of the Calibration Graph

Reagent	1 (400 μM)	2 (320 μM)	3 (200 μM)	4 (80 µM)	5 (40 μM)	6 (20 μM)
Solution B	1000 µl	800 µl	500 µl	200 µl	100 µl	50 µl
dH ₂ 0	0 µl	200 µl	500 µl	800 µl	900 µl	950 µl
Total Volume	1 ml	1 ml	1 ml	1 ml	1 ml	1 ml

1. Make 6 dilutions of Solution B in distilled water in 1 ml tubes at room temperature:

- Pipette 100 μl each of the diluted solutions into a well of a 96-well microplate. Work at least in duplicates.
- 3. Add 100 µl of Solution A to each tube, mix and incubate for 10 minutes at room temperature.
- 4. In a separate wells, mix 100 μl of distilled water with 100 μl of Solution A for use as a blank.
- 5. Read the plate on a fluorescence microplate reader set to an excitation wavelength of 395-405 nm and an emission wavelength of 617 nm. If a time-resolving reader is available, set the lag time to >30 μ s and integrate over 100 μ s.
- 6. Calculate the average value for the duplicate measurements, then plot the fluorescence intensity (or relative increase in fluorescence intensity) versus the concentration of H₂O₂.

Determination of H₂O₂ Concentrations in Samples

- Mix 100 µl of aqueous sample containing 0.2-10 mg/ml of H₂O₂ with 100 µl of Solution A in a well of a 96-well microplate and incubate for 10 minutes at room temperature. As phosphate buffer can cause high background, we recommend samples in phosphate-free buffers like MOPs.
- 2. Measure the luminescence as described above.
- 3. Use the Calibration Graph prepared above and the measured luminescence to determine the concentration of H₂O₂ for each sample.

Section A.	Troubleshooting	Guide
------------	-----------------	-------

Problem/question	Recommendation
High background in samples	Phosphate and citrate can cause increases in the fluorescent intensity of the $EuTc-H_2O_2$ complex. Use phosphate-free buffer systems like MOPs buffer.
	Set the lag time of the reader above 30 µs.
High fluorescent signal in "negative" controls	It is important to prepare the Standard Curve in the same media as that of the sample. Use equal volumes of buffer in the sample and in the dilutions when preparing the Standard Curve.

Section B. Related Products

MAX Stain [™] Immunofluorescence Tools	Format	Catalog No.
MAXpack™ Immunostaining Media Kit	1 kit	15251
(contains 1 each of 15252, 15253 & 15254)		
MAXblock [™] Blocking Medium	150 ml	15252
MAXbind™ Staining Medium	250 ml	15253
MAXwash™ Washing Medium	1000 ml	15254
Cell Viability Assay	Format	Catalog No.
ToxCount [™] Cell Viability Assay	20 x 96 rxns	18010
Transcription Factor ELISAs	Format	Catalog No.
Albumin Blue Fluorescent Assay Kit	1 kit	15002
Fluorescent Cell Stains	Format	Catalog No.
LavaCell™ Live Cell Membrane Staining Kit	200 µg	15004
Chromeo™ Live Cell Mitochondrial Staining Kit	1 kit	15005
Chromeo" Red Fluorescent Fixed Cell Staining Kit	1 kit	15006
Protein & Extract Quantification	Format	Catalog No.
ProStain [™] Protein Quantification Kit	1000 rxns	15001
Capillary Electrophoresis	Format	Catalog No.
CE Dye 503	1 kit	15101
CE Dye 540	1 kit	15102
Fluorescent Pyrylium Dyes (Py-Dyes)	Format	Catalog No.
Chromeo [™] P429	1 mg	15108
Chromeo [™] P465	1 mg	15105
Chromeo [™] P503	1 mg	15106
Chromeo™ P540	1 mg	15107
Chromeo™ P543	1 mg	15109

Fluorescent Dyes	Excitation / Emission	Format	Catalog No.
Chromeo™ 488 Carboxylic Acid	488 nm / 517 nm	1 mg	15510
Chromeo [™] 488 NHS-Ester	488 nm / 517 nm	1 mg	15511
Chromeo™ 494 Carboxylic Acid	494 nm / 628 nm	1 mg	15110
Chromeo [™] 494 NHS-Ester	494 nm / 628 nm	1 mg	15111
Chromeo™ 505 Carboxylic Acid	505 nm / 526 nm	1 mg	15610
Chromeo [™] 505 NHS-Ester	505 nm / 526 nm	1 mg	15611
Chromeo™ 546 Carboxylic Acid	545 nm / 561 nm	1 mg	15210
Chromeo [™] 546 NHS-Ester	545 nm / 561 nm	1 mg	15211
Chromeo™ 642 Carboxylic Acid	642 nm / 660 nm	1 mg	15310
Chromeo [™] 642 NHS-Ester	642 nm / 660 nm	1 mg	15311

Antibody/Protein Labeling	Excitation / Emission	Format	Catalog No.
Chromeo [™] 488 Antibody Labeling Kit	488 nm / 517 nm	1 kit	15090
Chromeo [™] 494 Antibody Labeling Kit	494 nm / 628 nm	1 kit	15091
Chromeo [™] 546 Antibody Labeling Kit	545 nm / 561 nm	1 kit	15092
Chromeo [™] 642 Antibody Labeling Kit	642 nm / 660 nm	1 kit	15093

Fluorescent Secondary Antibodies	Format	Catalog No.
Chromeo™ 488 Goat anti-Mouse IgG	1 mg	15031
Chromeo™ 488 Goat anti-Rabbit IgG	1 mg	15041
Chromeo™ 494 Goat anti-Rabbit IgG	1 mg	15042
Chromeo™ 546 Goat anti-Mouse IgG	1 mg	15033
Chromeo™ 546 Goat anti-Rabbit IgG	1 mg	15043
Chromeo™ 642 Goat anti-Mouse IgG	1 mg	15034
Chromeo™ 642 Goat anti-Rabbit IgG	1 mg	15044
ATTO 594 Goat anti-Mouse IgG	250 µl	15037
ATTO 594 Goat anti-Rabbit IgG	250 µl	15047
ATTO 647N (STED) Goat anti-Mouse IgG	250 µl	15038
ATTO 647N (STED) Goat anti-Rabbit IgG	250 µl	15048
ATTO 655N (STED) Goat anti-Mouse IgG	250 µl	15039
ATTO 655N (STED) Goat anti-Rabbit IgG	250 µl	15049
Fluorescent Protein Labeling	Format	Catalog No.
LigandLink™ pLL-1 Kit	1 kit	34001
LigandLink™ pLL-1-NF⊮B p65 Kit	1 kit	34004
LigandLink™ pLL-1-p53 Kit	1 kit	34005
LigandLink™ pLL-1-STAT1 Kit	1 kit	34006
LigandLink™ Fluorescein Label	300 rxns	34101
LigandLink™ Hexachlorofluorescein Label	300 rxns	34104

Technical Services

If you need assistance at any time, please call Active Motif Technical Service at one of the numbers listed below.

Active Motif North America

1914 Palomar Oaks Way, Suite 150 Carlsbad, CA 92008 USA Toll Free: 877 222 9543 Telephone: 760 431 1263 Fax: 760 431 1351 E-mail: tech_service@activemotif.com

Active Motif Europe

104 Avenue Franklin Roosevelt	
B-1330 Rixensart, Belgium	
UK Free Phone:	0800 169 31 47
France Free Phone:	0800 90 99 79
Germany Free Phone:	0800 181 99 10
Telephone:	+32 (0)2 653 0001
Fax:	+32 (0)2 653 0050
E-mail:	eurotech@activemotif.com

Active Motif Japan

Azuma Bldg, 7th Floor 2-21 Ageba-Cho, Shinjuku-Ku Tokyo, 162-0824, Japan Telephone: +81 3 5225 3638 Fax: +81 3 5261 8733 E-mail: japantech@activemotif.com

Visit Active Motif on the worldwide web at http://www.activemotif.com

At this site:

- Read about who we are, where we are, and what we do
- Review data supporting our products and the latest updates
- Enter your name into our mailing list to receive our catalog, *MotifVations* newsletter and notification of our upcoming products
- Share your ideas and results with us
- · View our job opportunities

Don't forget to bookmark our site for easy reference!