Histone H3 acetyl Lys14 ELISA

Catalog No. 53115

(version A1)

Active Motif North America

1914 Palomar Oaks Way, Suite 150 Carlsbad, California 92008, USA Toll free: 877 222 9543 Telephone: 760 431 1263

Fax: 760 431 1351

Active Motif Europe

104 Avenue Franklin Roosevelt B-1330 Rixensart, Belgium UK Free Phone: 0800 169 31 47

France Free Phone: 0800 90 99 79

Germany Free Phone: 0800 181 99 10

Telephone: +32 (0)2 653 0001

Fax: +32 (0)2 653 0050

Active Motif Japan

Azuma Bldg, 7th Floor 2-21 Ageba-Cho, Shinjuku-Ku Tokyo, 162-0824, Japan

Telephone: +81 3 5225 3638 Fax: +81 3 5261 8733

Copyright 2011 Active Motif, Inc.

Information in this manual is subject to change without notice and does not constitute a commitment on the part of Active Motif, Inc. It is supplied on an "as is" basis without any warranty of any kind, either explicit or implied. Information may be changed or updated in this manual at any time. This documentation may not be copied, transferred, reproduced, disclosed, or duplicated, in whole or in part, without the prior written consent of Active Motif, Inc. This documentation is proprietary information and protected by the copyright laws of the United States and international treaties.

The manufacturer of this documentation is Active Motif. Inc.

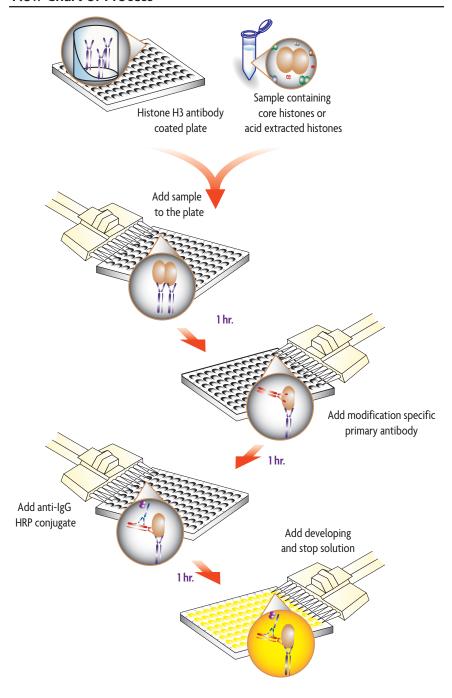
© 2011 Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150; Carlsbad, CA 92008. All rights reserved.

All trademarks, trade names, service marks or logos referenced herein belong to their respective companies.

TABLE OF CONTENTS F	Page
Overview	.1
Flow Chart of Process	.2
Introduction	.3
Kit Performance and Benefits	
Kit Components and Storage Additional Materials Required	.6
Protocols	
Buffer Preparation and Recommendations	.7
Quick Chart for Preparing Buffers	.8
ELISA Protocol.	.9
References.	12
Appendix	
Section A. Preparation of Acid Extract/Crude Histones	13
Section B. Troubleshooting Guide	15
Section C. Related Products	16
Technical Services	20

Overview

The addition or removal of modifications such as phospho-, methyl- and acetyl- functional groups to histones can have a profound effect on nuclear signaling as these dynamic modifications are critical in the regulation of transcription, chromosome packaging, DNA damage repair and functional genomics. Screening extracts for specific histone modifications is a simple way to assess cell health and the effect of treatment compounds on cell division.


The Histone H3 acetylated Lys14 ELISA is a simple solution for screening levels of acetylated lysine 14 on histone H3 in human, primate, mouse and rat systems. These kits are sandwich ELISAs that utilize a Histone H3 monoclonal antibody to capture histone H3 from your samples and a rabbit polyclonal Histone H3 acetyl Lys14 antibody for specific detection. A secondary antibody conjugated to horseradish peroxidase (HRP) and developing solutions provide a sensitive colorimetric readout that is easily quantified by spectrophotometry. The assay is performed in a convenient 96-stripwell plate, enabling you to simultaneously screen from 1 to 96 samples in a single experiment. It works with acid extracts from tissue or cell samples and is able to detect acetylated histone H3 on lysine 14 within a range of 0.06 to 2 micrograms of core histone preparations and 0.03 to 1 micrograms of acid extract.

For added convenience and a more quantitative interpretation of results, the histone acetylation ELISA kits all include Active Motif's recombinant acetylated histone technology. Each acetylated histone ELISA kit is supplied with the a 99% pure Histone H3 recombinant protein that has been specifically acetylated at the desired lysine site. The included Recombinant Histone H3 acetyl Lys14 protein enables you to build a reference standard curve to quantitate the amount of specifically acetylated H3 Lys14 in your samples.

product	format	catalog no.
Histone H3 acetyl Lys14 ELISA	1 x 96 rxns	53115

1

Flow Chart of Process

Introduction

Histone H3 acetylated Lys14

The basic structural unit of chromatin is the nucleosome, which consists of 146 base pairs (bp) of DNA wrapped around a histone octamer. The histone octamer consists of two copies each of the core histone H2A-H2B dimers and a tetramer of H3-H4. A linker histone, histone H1, binds chromatin outside the nucleosome unit to regulate chromatin structure.

Histone modifications such as phosphorylation, acetylation and methylation at specific amino acid residues on the histone tails that extend beyond the core nucleosome have been found to influence and regulate transcription, chromosome packaging and DNA damage repair. Many of these specific histone modifications are conserved throughout eukaryotes. While the biological significance of some histone modifications remains to be understood, some have been demonstrated to correlate very closely with specific cellular states like transcriptional activity^{1,2}.

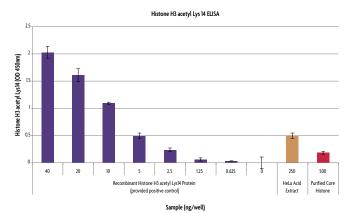
Histone acetylation is catalyzed by histone acetyltransferases (HATs) and has been shown to be important in the regulation of transcription, replication, DNA damage repair, and chromosomal condensation^{3,4,5,6}. The transcriptionally active form of chromatin, called euchromatin, exhibits higher levels of histone acetylation than the transcriptionally silent form known as heterochromatin. Acetylation of histones is believed to result in decondensation of heterochromatin into the more relaxed euchromatin structure. This decondensation increases accessibility of regulatory proteins, such as transcription factors and DNA repair elements, to the underlying DNA. Thus histone acetylation plays an important role in the active processes associated with chromatin remodeling.

In particular, the acetylation of lysine 14 on Histone H3 (H3K14) has been mapped to the initiation site of actively transcribed genes^{7,8}. Consistent with this role in activation of gene transcription, in mammalian embryos lacking the acetyltransferase HBO1, reduced levels of acetylated H3K14 is accompanied by a significant decrease in the expression of genes involved in embryonic patterning⁹. In addition to transcriptional activation, H3K14 acetylation has also been shown to be an important regulator of transcriptional elongation¹⁰.

Active Motif's Histone Modification ELISA Kits make it is easy to screen for changes in acetylation levels. Histone H3 acetyl Lys14 ELISA works with acid extracts from tissue or cell samples as well as purified core histones, such as those isolated using Active Motif's Histone Purification Kits (Catalog Nos. 40025 & 40026). The sensitive, specific assays are able to detect acetylated lysine 14 on histone H3 in less than 3.5 hours. As this assay is performed in a 96-stripwell plate, a large number of samples can be handled simultaneously, allowing for high-throughput automation.

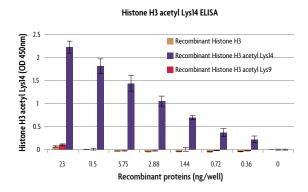
Histone Modification ELISAs have many applications including screening the effects of compounds on the acetylation levels of histone H3 lysine residues.

Kit Performance and Benefits


Detection limit: $> 0.06 \, \mu g/well$ of purified core histones. For acid extracts, $> 0.03 \, \mu g/well$ is recommended.

Range of detection: This ELISA provides quantitative results from 0.06 μ g to 2 μ g of purified core histones or from 0.03 ng to 1 μ g of histones isolated by acid extraction. The provided Recombinant Histone H3 acetyl Lys14 protein is tested at a range of 0.625 to 40 ng/well to identify the linear range for a best fit curve.

Cross-reactivity: Human, mouse, rat, yeast, and a wider range of species reactivity is predicted due to the high degree of sequence homology of histone H3.


Assay time: 3.5 hours.

Histone H3 acetyl Lys14 ELISA Kit

Histone H3 acetyl Lys14 detection.

The Histone H3 acetyl Lys14 ELISA was used to assay HeLa acid extract (250 ng) prepared as stated in Appendix Section A and purified HeLa core histones (500 ng) made using Active Motif's Histone Purification Kit (Catalog No. 40025). HeLa cells treated with sodium butyrate were used for preparation of both acid extract and purified histones. The provided Recombinant Histone H3 acetyl Lys14 protein was assayed from 0.625 - 40 ng/well as a reference standard curve. Data shown are the results from wells assayed in duplicate. These results are provided for demonstration only.

Histone H3 acetyl Lys14 specificity.

Recombinant Histone H3, acetyl Lys14 and acetyl Lys9 proteins were assayed from 0.36 ng - 23 ng per well using the Histone H3 acetyl Lys14 ELISA. These results indicate the specificity of the assay. There is extremely low background from histone H3 and little cross-reactivity with acetylated Lys14. This means that small, specific changes in acetyl Lys14 levels can easily be detected with this kit

Kit Components and Storage

Histone H3 acetyl Lys14 ELISA Kits are for research use only. Not for use in diagnostic procedures. All components are guaranteed stable for 6 months from date of receipt when stored properly.

Reagents	Quantity	Storage
Histone H3 acetyl Lys14 antibody	10 µl	4°C
HRP-conjugated anti-rabbit IgG	10 µl	4°C
Assay Dilution Buffer	18 ml	4°C
20X Wash Buffer	25 ml	4°C
Developing Solution	11 ml	4°C
Stop Solution	11 ml	4°C
Recombinant Histone H3 acetyl Lys14	5 μg (1 μg/μl)	-80°C
Histone H3 Capture Plate	1	4°C
Plate sealer	1	RT

Additional materials required

- Histone samples (recombinant, purified or acid extracted)
- Multi-channel pipettor
- Multi-channel pipettor reservoirs
- · Rocking platform/orbital shaker
- Microplate spectrophotometer capable of reading at 450 nm (655 nm as optional reference wavelength)

Protocols

Buffer Preparation and Recommendations

Assay Dilution Buffer

Assay Dilution Buffer is provided as a 1X solution and is ready for use once thawed.

20X Wash Buffer

Prepare the amount of 1X Wash Buffer required for the assay as follows: For every 100 ml of 1X Wash Buffer required, dilute 5 ml 20X Wash Buffer with 95 ml sterile water (see the Quick Chart for Preparing Buffers in this section). Mix gently to avoid foaming. The 1X Wash Buffer may be stored at 4°C for one week. The Tween 20 contained in the 20X Wash Buffer may form clumps, therefore it is necessary to completely resuspend any precipitates by incubating at 50°C for 2 minutes and mixing prior to use.

Preparation of antibodies (See the Quick Chart for Preparing Buffers in this Section.)

Dilute the Histone H3 acetyl Lys14 antibody 1:500 with Assay Dilution Buffer. Use 50 µl per well.

Dilute the HRP-conjugated anti-rabbit IgG antibody 1:2000 with Assay Dilution Buffer. Use 50 μ l per well.

Developing Solution

The Developing Solution should be warmed to room temperature before use. The Developing Solution is light sensitive, therefore, we recommend avoiding direct exposure to intense light during storage. The Developing Solution may develop a yellow hue over time. This does not affect product performance. However, a blue color present in the Developing Solution indicates that it has been contaminated and must be discarded. Prior to use, place the Developing Solution at room temperature for at least 1 hour. Transfer the amount of Developing Solution required for the assay into a secondary container before aliquoting into the wells (see the Quick Chart for Preparing Buffers in this section). After use, discard remaining Developing Solution.

Stop Solution

Prior to use, transfer the amount of Stop Solution required for the assay into a secondary container (see the Quick Chart for Preparing Buffers in this section). After use, discard remaining Stop Solution.

WARNING: The Stop Solution is corrosive. Wear personal protective equipment when handling, *i.e.* safety glasses, gloves and labcoat.

Diluting Recombinant Histone H3 acetyl Lys14 protein

The Recombinant Histone H3 acetyl Lys14 protein is provided as a control for quantitating the amount of acetylated histone H3. There is enough recombinant protein for at least 2 standard curves. Store protein at -80°C. Avoid multiple freeze/thaw cycles by only removing the protein from the freezer when planning to run a standard curve.

Preparing histone samples

Histone samples can be prepared using several techniques:

- A simple acid extraction (see Appendix Section A) is recommended instead of a nuclear extraction as histones are soluble in acidic solutions and many nuclear extraction procedures often exclude histones from the final sample. The acid extraction will provide crude histones.
- Purified core histones, such as those obtained from Active Motif's Histone Purification Kits (Catalog Nos. 40025 & 40026) produce distinct, clean core histone samples as determined by gel electrophoresis.
- 3. More stringent purification techniques use a hydroxyapatite column to provide highly pure, core histone samples, such as Active Motif's HeLa core Histones (Catalog No. 53501).

Regardless of the histone preparation technique, it is recommended initially to use a range of sample concentrations (e.g. 5 ng, 50 ng, 500 ng, 5 μ g) in order to determine the amount of sample necessary to fall within the linear area of the reference curve. Once the protein concentration for the linear area of the reference curve has been determined, perform the rest of the assays within the linear range.

Quick Chart for Preparing Buffers

Reagents to prepare	Components	For 1 well	For 1 strip (8 wells)	For 6 strips (48 wells)	For 12 strips (96 wells)
Primary Antibody	Histone H3 acetyl Lys14 Ab	0.1 μl	0.9 μl	5.4 μl	10.8 μl
	Assay Dilution Buffer	51.9 μl	450 μl	2.7 ml	5.4 ml
	TOTAL REQUIRED	52 μl	450 μl	2.7 ml	5.4 ml
Secondary Antibody	HRP-conjugated anti-rabbit IgG	0.026 μl	0.23 μl	1.35 µl	2.7 μl
	Assay Dilution Buffer	52 μl	450 μl	2.7 ml	5.4 ml
	TOTAL REQUIRED	52 μl	450 μl	2.7 ml	5.4 ml
1X Wash Buffer	Distilled water	1.9 ml	17.1 ml	95 ml	190 ml
	20X Wash Buffer	100 µl	0.9 ml	5 ml	10 ml
	TOTAL REQUIRED	2 ml	18 ml	100 ml	200 ml
Developing Solution	TOTAL REQUIRED	112.5 µl	900 µl	5.4 ml	10.8 ml
Stop Solution	TOTAL REQUIRED	112.5 µl	900 µl	5.4 ml	10.8 ml

ELISA Protocol

Read the entire protocol before use.

Determine the appropriate number of microwell strips required for testing samples, controls and blanks in duplicate. Store the unused strips in the aluminum pouch at 4°C. If less than 8 wells in a strip need to be used, cover the unused wells with a portion of the plate sealer while you perform the assay. The unused wells are stable at room temperature for the duration of the assay if kept dry. Once the assay is finished, unused strips should be returned to the aluminum pouch and stored at 4°C for a separate assay. Use the strip holder while performing the assay.

Prepare the IX Wash Buffer as described above in the section Buffer Preparation and Recommendations. Multi-channel pipettor reservoirs may be used for dispensing the Wash Buffer, Assay Dilution Buffer, Developing Solution and Stop Solution into the wells being used.

Standard Curve Preparation for H3 acetyl Lys14

Use this plate set-up example to prepare a standard curve for the Histone H3 acetyl Lys14 (H3 K14ac) ELISA in duplicate.

	H3 K	14ac										
	1	2	3	4	5	6	7	8	9	10	11	12
Α	40 ng	40 ng	ı	-	-	-	-	ı	-	-	-	_
В	20 ng	20 ng	ı	-	-	-	-	ı	-	-	-	-
C	10 ng	10 ng	-	_	_	-	_	-	-	_	-	_
D	5 ng	5 ng	-	_	_	_	_	-	-	_	-	_
E	2.5 ng	2.5 ng	-	_	_	-	_	-	-	_	-	_
F	1.25 ng	1.25 ng	-	_	-	-	_	_	-	-	-	_
G	0.625 ng	0.625 ng	_	-	-	_	-	_	_	-	_	-
Н	0 ng	0 ng	_	_	_	_	_	_	_	_	_	-

1. Recombinant Histones are provided at a $1 \mu g/\mu l$ concentration. Thaw the protein on ice. Before using, vortex the tube for 10 seconds and quick spin the contents to the bottom of the tube. Store remaining protein at -80°C and avoid multiple freeze/thaw cycles.

Prepare two microcentrifuge tubes. Dilute the Recombinant Histone H3 acetyl Lys14 to a final concentration of $0.8 \text{ ng/}\mu\text{l}$ with a two step dilution.

Tube 1: Add 2 μ l of Recombinant Histone H3 acetyl Lys14 protein (1 μ g/ μ l) to 98 μ l of Assay Dilution Buffer. Mix well by vortexing.

Tube 2: Transfer 10 μ l of Tube 1 into 240 μ l of Assay Dilution Buffer. Mix well by vortexing. The result will be 200 ng/250 μ l = 0.8 ng/ μ l.

- 2. Add 100 μ l of the diluted Recombinant Histone to wells A1 and A2. Discard any unused diluted Recombinant Histone.
- 3. Add 50 µl of Assay Dilution Buffer to wells B1 through H2.
- 4. Perform a serial two-fold dilution of the extracts by transferring 50 μ l of the extracts in row A to the wells in row B.
- Mix the contents of row B by pipetting up and down 3-5 times. Do not change pipette tips between well transfers.
- 6. Transfer 50 µl of the contents of row B to row C and mix, as previously described.
- 7. Continue this process until row G is reached.
- 8. When row G is reached, discard 50 μ l of the well contents so that the final volume is 50 μ l.
- 9. Row H will serve as the blank wells.

Step 1: Binding of H3 to the Capture Plate

 In duplicate, prepare the amount of desired sample. It is recommended to try a range of concentrations in order to determine the amount of sample necessary to fall within the linear range of the reference curve. Add desired amount of sample in 50 µl volume to plate.

Purified core histones: Recommended range of 0.06 to 2 µg

Acid extracts: Recommended range of 0.03 to 1 µg

- 2. Incubate plate containing the protein standard curve and samples for 1 hour at room temperature with agitation on orbital shaker or rocking platform.
- 3. After the incubation, wash the wells 3 times with 200 µl of Wash Buffer.

Step 2: Binding of Primary Antibody

- 4. Dilute the Histone H3 acetyl Lys14 antibody 1:500 in Assay Dilution Buffer and mix thoroughly.
- 5. Add 50 µl of diluted primary antibody to each well.
- 6. Incubate at room temperature for 1 hour with agitation.
- 7. After the incubation, wash the wells 3 times with 200 µl of Wash Buffer.

Step 3: Binding of Secondary Antibody

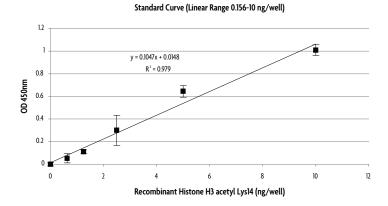
- 8. Dilute the HRP-conjugated anti-rabbit IgG antibody 1:2000 in Assay Dilution Buffer and mix thoroughly.
- 9. Add 50 µl of the diluted secondary antibody solution to each well.
- 10. Incubate at room temperature for 1 hour without agitation.

- 11. During this incubation, place the Developing Solution at room temperature.
- 12. After the incubation, wash the wells 3 times with 200 µl of wash buffer.

Step 4: Colorimetric Reaction

- 13. Remove as much of the final wash as possible by blotting the plate on paper towels.
- 14. Add 100 µl of room temperature Developing Solution to all wells being used.
- 15. Incubate under low light conditions from 30 seconds to 10 minutes at room temperature protected from direct light. Please read the Certificate of Analysis supplied with this kit for optimal development time associated with this lot number. Monitor the blue color development in the protein standard curve wells containing the higher concentrations of Recombinant Histone H3 acetyl Lys14 protein until they turn medium to dark blue. Do not overdevelop.
- 16. Add 100 μ l of Stop Solution to all the wells. In presence of the acid, the blue color turns vellow.
- 17. Read absorbance on a spectrophotometer within 5 minutes at 450nm with an optional reference wavelength of 655 nm. Blank the plate reader according to the manufacturer's instructions using the blank wells.
 - Reading the reference wavelength is optional. Most microtiter plate readers are equipped to perform dual wavelength analysis and with the appropriate software, will automatically subtract the reference wavelength absorbance from the test wavelength absorbance. If your plate reader does not have this capability, you may read the plate twice, once at 450 nm and once at 655 nm then manually subtract the 655 nm OD from the 450 nm OD values.

Calculation of results using the standard curve


- To generate a standard curve using the included Recombinant Histone H3 acetyl Lys14 protein, average the duplicate readings for each standard, control, and sample and subtract the optical density (OD) obtained from the zero standard (Row H blank wells).
- Plot the OD for the standards against the quantity (ng/well) of the standards and draw the best fit curve. The best curve fit may vary depending on the developing times used and should be calculated each time a standard curve is run. The provided Recombinant Histone acetyl Lys14 protein is tested at a range of 0.625 to 40 ng/well to identify the linear range for a best fit curve. To determine the concentration of modified histone in your sample, you will need to identify the linear portion of the standard curve. The linear range should be determined each time the standard curve is run. Only values that generate a linear regression with an R² value >0.96 should be used for analysis. The data can be linearized using log/log paper and regression analysis may also be applied.
- To quantify the amount of acetyl Lys14 from histone H3 in the samples, find the absorbance value for the samples on the y-axis and extend a horizontal line to the standard curve. At the intersection point extend a vertical line to the x-axis and read the correspond-

ing standard value. Note: If the samples have been diluted, the value read from the standard curve must be multiplied by the dilution factor.

See the example standard curve below.

Example curve:

The following standard curve is provided for demonstration only. A standard curve should be made every time an experiment is performed.

References

- 1. Kirmizis, A., et al. (2004) Genes & Dev. 18: 1592-1605.
- 2. Squazzo, S., et al. (2006) Genome Res. 16: 890-900.
- 3. Millar, C.B., et al. (2006) Genes & Dev. 20: 711-722.
- 4. Doyon, Y., et al. (2006) Mol. Cell. 21: 51-64.
- 5. Qin, S., Parthun, M.R. (2006) Mol. Cell Biol. 26: 3649-3658.
- Shrogen-Knaak, M., et al. (2006) Science. 311: 844-847.
- 7. Liang, G., et al. (2004) PNAS. 101: 7357-7362.
- 8. Bernstein, B., et al. (2005) Cell. 120: 169-181.
- 9. Kueh, A.J., et al. (2010) Mol. Cell Biol. 31: 845-860.
- 10. Johnsson, A., et al. (2009) EMBO Rep. 10: 1009-1014.

Appendix

Section A. Preparation of Acid Extract/Crude histone proteins

This procedure can be used for a confluent cell layer of 150 mm plate. The yield is approximately 0.15 mg of nuclear proteins from 9 x 10^6 cells.

- 1. Grow HeLa cells to 70% confluency in DMEM with 10% FBS.
- Treat cells as desired.
- 3. Wash cells with 1X PBS and aspirate.
- 4. Add 3-5 ml of PBS per 150 mm plate.
- 5. Scrape cells from the plate and transfer to a 50 ml conical tube.
- 6. Pellet the cells by centrifugation in a pre-cooled 4°C rotor at 200 x g for 5-10 minutes.
- 7. Aspirate as much of the PBS as possible without disturbing the cell pellet.
- 8. Resuspend the cell pellet in 5 volumes of Lysis Buffer (see below).
- 9. Incubate on ice for 30 minutes and occasionally invert the tube to mix.
- 10. Centrifuge the lysate at 11,000 x g for 10 minutes at 4°C.
- Collect the supernatant fraction containing acid soluble proteins, and discard the acid-insoluble pellet.
- 12. Immediately neutralize the acid extracted proteins by adding 2/5 the total volume of Neutralization Buffer (see below).
- 13. Quantify the protein concentration of your acid extraction using either gel electrophoresis or a Bradford Assay.
 - Gel electrophoresis is a more sensitive technique to determine histone concentration as histones are most effectively stained by Coomassie dye in a gel matrix. To determine the protein concentration run a BSA or histone standard curve on the gel.
 - A Bradford Assay can be used to determine total protein concentration, not just the concentration of crude histone proteins. A total protein determination, however, is sufficient for use in the Histone Modification ELISA Kits. The quantity of acid extract tested in the Histone Modification ELISA Kits are based on total protein determination values.
- 14. Immediately aliquot the extract in small volumes to avoid multiple freeze/thaws.
- 15. Store the protein at -80°C for long-term stability.

Lysis Buffer:

0.4 M HCl

Neutralization Buffer:

1 M Sodium phosphate, dibasic, pH 12.5. Use 5 M NaOH to adjust the pH. 2.5 mM DTT $10\ \text{mM}\ \text{PMSF}$

Note: DTT and PMSF must be added immediately prior to use.

Section B: Troubleshooting Guide

Problem/question	Possible cause	Recommendation
No signal or weak signal	Omission of key reagent	Check that all reagents have been added in all wells in the correct order
	Substrate or conjugate is no longer active	Test conjugate and substrate for activity by mixing a small aliquot of HRP and Developing Solution together
	Enzyme inhibitor present	Sodium azide will inhibit the peroxidase reaction. Follow our recommendations to prepare buffers
	Plate reader settings not optimal	Verify the wavelength and filter settings in the plate reader
	Incorrect assay temperature	Bring Developing Solution and Stop Solution to room temperature before using
	Inadequate volume of Developing Solution	Check to make sure that correct volume is delivered by pipette
High background in all wells	Developing time too long	Stop enzymatic reaction as soon as the positive wells turn medium-dark blue
	Concentration of anti- bodies is too high	Increase antibody dilutions
	Inadequate washing	Ensure all wells are filled with Wash Buffer and follow washing recommendations
Uneven color development	Incomplete washing of wells	Ensure all wells are filled with Wash Buffer and follow washing recommendations
	Well cross-contami- nation	Follow washing recommendations
High background in sample wells	Too much sample per well	Decrease amount of sample per well. For acid extracts, dilute down to 500 ng/well and for purified core histone, dilute down to 250 ng/well
	Concentration of anti- bodies is too high	Perform antibody titration to determine optimal working concentration. Start using 1:500-1:1000 for primary antibody and 1:2000-1:5000 for the secondary antibody. The sensitivity of the assay will be decreased
No signal or weak signal in sample wells	Not enough sample per well	For purified core histones, increase to 5 µg/well. For extracts, make sure you are using an acid extract by following the protocol recommended in Appendix Section A. Increase amount of acid extract to 2 to 5 µg/well
No signal or weak signal in standard curve wells	Too many freeze/thaw cycles of protein	Store at -80°C to avoid multiple freeze/thaws

Section C. Related Products

Histone ELISAs	Format	Catalog No.
Histone H3 monomethyl Lys4 ELISA	1 x 96 rxns	53101
Histone H3 dimethyl Lys4 ELISA	1 x 96 rxns	53112
Histone H3 trimethyl Lys4 ELISA	1 x 96 rxns	53113
Histone H3 dimethyl Lys9 ELISA	1 x 96 rxns	53108
Histone H3 trimethyl Lys9 ELISA	1 x 96 rxns	53109
Histone H3 monomethyl Lys27 ELISA	1 x 96 rxns	53104
Histone H3 trimethyl Lys27 ELISA	1 x 96 rxns	53106
Histone H3 phospho Ser10 ELISA	1 x 96 rxns	53111
Histone H3 phospho Ser28 ELISA	1 x 96 rxns	53100
Histone H3 acetyl Lys14 ELISA	1 x 96 rxns	53115
Total Histone H3 ELÍSA	1 x 96 rxns	53110

Recombinant Methylated Histones	Format	Catalog No.
Recombinant Histone H2A	50 μg	31251
Recombinant Histone H2B	50 μg	31252
Recombinant Histone H3 (C110A)	50 μg	31207
Recombinant Histone H3 monomethyl Lys4	50 μg	31208
Recombinant Histone H3 dimethyl Lys4	50 μg	31209
Recombinant Histone H3 trimethyl Lys4	50 μg	31210
Recombinant Histone H3 monomethyl Lys9	50 μg	31211
Recombinant Histone H3 dimethyl Lys9	50 μg	31212
Recombinant Histone H3 trimethyl Lys9	50 μg	31213
Recombinant Histone H3 monomethyl Lys27	50 μg	31214
Recombinant Histone H3 dimethyl Lys27	50 μg	31215
Recombinant Histone H3 trimethyl Lys27	50 μg	31216
Recombinant Histone H3 monomethyl Lys36	50 μg	31217
Recombinant Histone H3 dimethyl Lys36	50 μg	31218
Recombinant Histone H3 trimethyl Lys36	50 µg	31219
Recombinant Histone H3 monomethyl Lys79	50 μg	31220
Recombinant Histone H3 dimethyl Lys79	50 μg	31221
Recombinant Histone H3 trimethyl Lys79	50 μg	31222
Recombinant Histone H4	50 μg	31223
Recombinant Histone H4 monomethyl Lys20	50 μg	31224
Recombinant Histone H4 dimethyl Lys20	50 μg	31225
Recombinant Histone H4 trimethyl Lys20	50 µg	31226

Recombinant Acetylated Histones	Format	Catalog No.
Recombinant Histone H3 acetyl Lys9	25 µg	31253
Recombinant Histone H3 acetyl Lys14	25 μg	31254
Recombinant Histone H3 acetyl Lys23	25 μg	31255

DNA Methylation	Format	Catalog No.
MethylDetector™	50 rxns	55001
MethylCollector™	25 rxns	55002
MethylCollector™ Ultra	30 rxns	55005
UnMethylCollector™	30 rxns	55004
Fully Methylated Jurkat DNA	10 µg	55003

		_	
Histone Purification		Format	Catalog No.
Histone Purification Kit		10 rxns	40025
Histone Purification Mini Kit		20 rxns	40026
Chromatin Assembly		Format	Catalog No.
Chromatin Assembly Kit		10 rxns	53500
HeLa Core Histones		36 µg	53501
Histone Acetyltransferase and D	eacetylase Activity	Format	Catalog No.
HAT Assay Kit (Fluorescent)	· · · · · · · · · · · · · · · · · · ·	1 x 96 rxns	56100
Recombinant p300 protein, cataly	rtic domain	5 μg	31205
HDAC Assay Kit (Fluorescent)		1 x 96 rxns	56200
HDAC Assay Kit (Colorimetric)		1 x 96 rxns	56210
SUMOylation		Format	Catalog No.
SUMOlink™ SUMO-1 Kit		20 rxns	40120
SUMOlink™ SUMO-2/3 Kit		20 rxns	40220
ChIP-IT™ Kits		Format	Catalog No.
ChIP-IT™ Express		25 rxns	53008
ChIP-IT™ Express Enzymatic		25 rxns	53009
ChIP-IT™ Express HT		96 rxns	53018
ChIP-IT™ Protein G Magnetic Bead	ls	25 rxns	53014
Re-ChIP-IT™		25 rxns	53016
ChIP-IT™		25 rxns	53001
ChIP-IT™ w/o controls		25 rxns	53004
ChIP-IT™ Shearing Kit		10 rxns	53002
ChIP-IT™ Enzymatic		25 rxns	53006
ChIP-IT™ Enzymatic w/o controls		25 rxns	53007
Enzymatic Shearing Kit		10 rxns	53005
Salmon Sperm DNA/Protein G ag	arose	25 rxns	53003
ChIP-IT™ Control Kit – Human		5 rxns	53010
ChIP-IT™ Control Kit – Mouse		5 rxns	53011
ChIP-IT™ Control Kit – Rat		5 rxns	53012
Ready-to-ChIP HeLa Chromatin		10 rxns	53015
Ready-to-ChIP Hep G2 Chromatin		10 rxns	53019
Ready-to-ChIP K-562 Chromatin	n	10 rxns	53020
Ready-to-ChIP NIH/3T3 Chromati	11	10 rxns	53021
ChIP-validated Antibodies	Application	Format	Catalog No.
AP-2 pAb	ChIP, EMSA	17 rxns	39304
c-Jun pAb	ChIP, EMSA, IF	100 µg	39309
C/EBPα pAb	ChIP, EMSA, IF, WB	100 µg	39306
CTCF mAb	ChIP, WB	200 μg	39621
DNMTI mAb	ChIP, IHC, IP, WB	100 µg	39204
DNMT3A mAb	ChIP, IF, IHC, WB	100 µg	39206
DNMT3B mAb	ChIP, IF, IP, WB	100 μg	39207
E2F-1 pAb	ChIP, EMSA	17 rxns	39313
E2F-6 mAb	ChIP, WB	100 μl	39509
EZH2 pAb	ChIP, WB	100 μg	39639
HBP-1 mAb	ChIP, IF, WB	100 µl	39511

HDAC1 mAb (Clone 10E2)	ChIP, IF, IHC, IP, WB	200 µl	39531
HDAC2 mAb (Clone 3F3)	ChIP, IF, IHC, IP, WB	200 µl	39533
HDAC3 pAb `	ChIP, WB	100 µg	40968
HDAC4 pAb	ChIP, WB	100 µg	40969
HDAC5 pAb	ChIP, WB	100 µg	40970
HDAC6 pAb	ChIP, WB	100 µg	40971
	ChIP, WB	, ,	39235
Histone H2A pAb	,	200 µl	
Histone H2A phospho Ser129 pAb	ChIP, IF, IP, WB	200 μl	39271
Histone H2A.Z pAb	ChIP, WB	200 µl	39113
Histone H2B pAb	ChIP, WB	200 µl	39237
Histone H2B acetyl Lys5 pAb	ChIP, WB	200 µl	39123
Histone H2B acetyl Lys16 pAb	ChIP, WB	200 µl	39121
Histone H2B acetyl Lys46 pAb	ChIP, WB	200 µl	39571
Histone H3, C-terminal pAb	ChIP, WB	200 µl	39163
Histone H3 acetyl Lys4 pAb	ChIP, IF, WB	200 µl	39381
Histone H3 monomethyl Lys4 mAb	ChIP, WB	100 µg	39635
Histone H3 dimethyl Lys4 pAb	ChIP, WB	200 µl	39141
Histone H3 trimethyl Lys4 pAb	ChIP, WB	200 µl	39159
Histone H3 dimethyl Lys9 pAb	ChIP, IF, WB	200 µl	39239
Histone H3 trimethyl Lys9 pAb	ChIP, WB	200 µl	39161
Histone H3 acetyl Lys18 pAb	ChIP, IF, WB	200 μl	39587
			39133
Histone H3 acetyl Lys27 pAb	ChIP, IF, WB	200 µg	
Histone H3 acetyl Lys27 pAb	ChIP, WB	200 μl	39135
Histone H3 dimethyl Lys27 pAb	ChIP, IF, WB	200 µl	39245
Histone H3 trimethyl Lys27 mAb	ChIP, WB	200 μl	39535
Histone H3 trimethyl Lys27 pAb	ChIP, IF, WB	200 µg	39155
Histone H3 trimethyl Lys27 pAb	ChIP, WB	200 µl	39156
Histone H3 acetyl Lys36 pAb	ChIP, IF, WB	200 µl	39379
Histone H3 acetyl Lys56 pAb	ChIP, WB	200 µl	39281
Histone H3 acetyl Lys64 pAb	ChIP, IF, WB	200 µl	39545
Histone H3 acetyl Lys79 pAb	ChIP, WB	200 µl	39565
Histone H4 pan-acetyl pAb	ChIP, IF, WB	200 µl	39243
Histone H4 tetra-acetyl pAb	ChIP, WB	50 µl	39179
Histone H4 acetyl Lys5 pAb	ChIP, IF, WB	200 µl	39169
Histone H4 acetyl Lys5 pAb	ChIP, IF, WB	200 µl	39583
Histone H4 acetyl Lys12 pAb	ChIP, IF, WB	200 µl	39165
Histone H4 acetyl Lys16 pAb	ChIP, WB	200 µl	39167
Histone H4 monomethyl Lys20 pAb	ChIP, IF, WB	200 µl	39175
Histone H4 trimethyl Lys20 pAb	ChIP, IF, WB	200 µl	39180
, , , ,			
IRF-3 pAb	ChIP, WB	100 μl	39033
JunB pAb	ChIP, EMSA	17 rxns	39326
JunD pAb	ChIP, EMSA	100 µl	39328
L3MBTL1 pAb	ChIP, IP, WB	200 µl	39182
p53 pAb	ChIP, EMSA	17 rxns	39334
PP2A pAb	ChIP, IP, WB	200 µl	39192
RbAp46/48 pAb	ChIP, WB	200 µl	39198
RNA pol II mAb	ChIP, ELISA, IF, IP, WB	200 µl	39097
SNF2h mAb	ChIP, IF, IP, WB	200 µl	39543
Sp1 pAb	ChIP, WB	100 µl	39058
TRF2 Goat pAb	ChIP, IP, WB	100 μg	39223
•			

For an up-to-date list of ChIP-validated antibodies, please visit www.activemotif.com/chipabs

Application Key: ChIP = Chromatin Immunoprecipitation; EMSA = Electrophoretic Mobility Shift Assay; IF = Immunofluorescence; IHC = Immunohistochemistry; IP = Immunoprecipitation; WB = Western blot

Transcription Factor ELISAs	Format	Catalog No.
TransAM™ AML-1/Runx1	1 x 96-well plate	47396
TransAM™ AML-3/Runx2	1 x 96-well plate	44496
TransAM™ AP-1 Family	2 x 96-well plates	44296
TransAM™ AP-1 c-Fos	1 x 96-well plate	44096
TransAM™ AP-1 c-Jun	1 x 96-well plate	46096
TransAM™ AP-1 FosB	1 x 96-well plate	45096
TransAM™ AP-1 JunD	1 x 96-well plate	43496
TransAM™ ATF-2	1 x 96-well plate	42396
TransAM™ c-Myc	1 x 96-well plate	43396
TransAM™ C/EBP α/β	1 x 96-well plate	44196
TransAM™ CREB	1 x 96-well plate	42096
TransAM™ pCREB	1 x 96-well plate	43096
TransAM™ Elk-1	1 x 96-well plate	44396
TransAM™ ER	1 x 96-well plate	41396
TransAM™ FKHR (FOXO1/4)	1 x 96-well plate	46396
TransAM™ GATA Family	2 x 96-well plates	48296
TransAM™ GATA-4	1 x 96-well plate	46496
TransAM™ GR	1 x 96-well plate	45496
TransAM™ HIF-1	1 x 96-well plate	47096
TransAM™ HNF Family	2 x 96-well plates	46296
TransAM™ HNF-1	1 x 96-well plate	46196
TransAM™ IRF-3 (Human)	1 x 96-well plate	48396
TransAM™ IRF-3 (Mouse)	1 x 96-well plate	48496
TransAM™ IRF-7	1 x 96-well plate	50196
TransAM™ MAPK Family	2 x 96-well plates	47296
TransAM™ MEF2	1 x 96-well plate	43196
TransAM™ MyoD	1 x 96-well plate	47196
TransAM™ NF-YA	1 x 96-well plate	40396
TransAM™ NFATc1	1 x 96-well plate	40296
TransAM™ NFκB Family	2 x 96-well plates	43296
TransAM™ Flexi NFxB Family	2 x 96-well plates	43298
TransAM™ NFκB p50	1 x 96-well plate	41096
TransAM™ NFκB p50 Chemi	1 x 96-well plate	41097
TransAM™ Flexi NF κB p50	1 x 96-well plate	41098
TransAM™ NFκB p52	1 x 96-well plate	48196
TransAM™ NFκB p52 Chemi	1 x 96-well plate	48197
TransAM™ NFκB p65	1 x 96-well plate	40096
TransAM™ NFκB p65 Chemi	1 x 96-well plate	40097
TransAM™ Flexi NF16B p65	1 x 96-well plate	40098
TransAM™ Nrf2	1 x 96-well plate	50296
TransAM™ Oct-4	1 x 96-well plate	42496
TransAM™ p53	1 x 96-well plate	41196
TransAM™ PPARγ	1 x 96-well plate	40196
TransAM™ Sp1	1 x 96-well plate	41296
TransAM™ Sp1/Sp3	1 x 96-well plate	40496
TransAM™ STAT Family	2 x 96-well plates	42296
TransAM™ STAT3	1 x 96-well plate	45196
TransAM™ T-bet	1 x 96-well plate	51396
	•	

Technical Services

If you need assistance at any time, please call Active Motif Technical Service at one of the numbers listed below.

Active Motif North America

1914 Palomar Oaks Way, Suite 150

Carlsbad, CA 92008

USA

Toll Free: 877 222 9543 Telephone: 760 431 1263 Fax: 760 431 1351

E-mail: tech service@activemotif.com

Active Motif Europe

104 Avenue Franklin Roosevelt

B-1330 Rixensart, Belgium

UK Free Phone: 0800 169 31 47
France Free Phone: 0800 90 99 79
Germany Free Phone: 0800 181 99 10
Telephone: +32 (0)2 653 0001
Fax: +32 (0)2 653 0050

E-mail: eurotech@activemotif.com

Active Motif Japan

Azuma Bldg, 7th Floor

2-21 Ageba-Cho, Shinjuku-Ku

Tokyo, 162-0824, Japan

Telephone: +81 3 5225 3638 Fax: +81 3 5261 8733

E-mail: japantech@activemotif.com

Visit Active Motif on the worldwide web at http://www.activemotif.com

At this site:

- Read about who we are, where we are, and what we do
- Review data supporting our products and the latest updates
- Enter your name into our mailing list to receive our catalog, MotifVations newsletter and notification of our upcoming products
- · Share your ideas and results with us
- View our job opportunities

Don't forget to bookmark our site for easy reference!