Active Motif,
Tools to analyze nuclear function,
Your CartYour Cart 0 items

STAY INFORMED

Sign up to receive new product updates
and promotional pricing

Active Motif

Epigenetics News

April 2015

Disruption of DNA-methylation-dependent long gene repression in Rett syndrome
Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism. MECP2 encodes a methyl-DNA-binding protein that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.
Gabel et al. (2015) Nature. doi:10.1038/nature14319
Abstract.
   Active Motif products related to this paper:
         ChIP-IT® High Sensitivity Kit
         GelShift Chemiluminescent EMSA

m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation
Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m6A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner.
Geula et al. (2015) Science. doi:10.1126/science.1261417
Abstract.
   Active Motif products related to this paper:
         Oct4 polyclonal antibody
         Nanog polyclonal antibody
         m6A polyclonal antibody
         H3K27me3 polyclonal antibody

Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation
Polycomb Group (PcG) proteins maintain transcriptional repression throughout development, mostly by regulating chromatin structure. Polycomb Repressive Complex 2 (PRC2), a component of the Polycomb machinery, is responsible for the methylation of histone H3 lysine 27 (H3K27me2/3). Jarid2 was previously identified as a cofactor of PRC2, regulating PRC2 targeting to chromatin and its enzymatic activity. Deletion of Jarid2 leads to impaired orchestration of gene expression during cell lineage commitment. Here, we reveal an unexpected crosstalk between Jarid2 and PRC2, with Jarid2 being methylated by PRC2. This modification is recognized by the Eed core component of PRC2 and triggers an allosteric activation of PRC2’s enzymatic activity. We show that Jarid2 methylation is important to promote PRC2 activity at a locus devoid of H3K27me3 and for the correct deposition of this mark during cell differentiation. Our results uncover a regulation loop where Jarid2 methylation fine-tunes PRC2 activity depending on the chromatin context.
Sanulli et al. (2015) Molecular Cell. doi:10.1016/j.molcel.2014.12.020
Abstract.
   Active Motif products cited in this paper:
         H3K4me3 polyclonal antibody
         Histone H3, C-terminal polyclonal antibody
   Active Motif products related to this paper:
         ChIP-IT® High Sensitivity Kit
         ChIP-IT® ChIP-Seq Kit
         ChIP-Seq Validated Antibodies
 

March 2015

Integrative analysis of 111 reference human epigenomes
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.
Kundaje et al. (2015) Nature. doi:10.1038/nature14248
Abstract.
   Active Motif products related to this paper:
         ChIP Products
         ChIP-Seq Validated Antibodies
         ChIP-IT® DNA Methylation Products

Chromatin architecture reorganization during stem cell differentiation
Higher-order chromatin structure is emerging as an important regulator of gene expression. Although dynamic chromatin structures have been identified in the genome, the full scope of chromatin dynamics during mammalian development and lineage specification remains to be determined. By mapping genome-wide chromatin interactions in human embryonic stem (ES) cells and four human ES-cell-derived lineages, we uncover extensive chromatin reorganization during lineage specification. We observe that although self-associating chromatin domains are stable during differentiation, chromatin interactions both within and between domains change in a striking manner, altering 36% of active and inactive chromosomal compartments throughout the genome. By integrating chromatin interaction maps with haplotype-resolved epigenome and transcriptome data sets, we find widespread allelic bias in gene expression correlated with allele-biased chromatin states of linked promoters and distal enhancers. Our results therefore provide a global view of chromatin dynamics and a resource for studying long-range control of gene expression in distinct human cell lineages.
Dixon et al. (2015) Nature. doi:10.1038/nature14222
Abstract.
   Active Motif products cited in this paper:
         Histone H3K27ac polyclonal antibody
   Active Motif products related to this paper:
         ChIP-Seq Validated Antibodies

Cell-of-origin chromatin organization shapes the mutational landscape of cancer
Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed uniformly along the human genome. Instead, different human genomic regions vary by up to fivefold in the local density of cancer somatic mutations, posing a fundamental problem for statistical methods used in cancer genomics. Epigenomic organization has been proposed as a major determinant of the cancer mutational landscape. However, both somatic mutagenesis and epigenomic features are highly cell-type-specific. We investigated the distribution of mutations in multiple independent samples of diverse cancer types and compared them to cell-type-specific epigenomic features. Here we show that chromatin accessibility and modification, together with replication timing, explain up to 86% of the variance in mutation rates along cancer genomes. The best predictors of local somatic mutation density are epigenomic features derived from the most likely cell type of origin of the corresponding malignancy. Moreover, we find that cell-of-origin chromatin features are much stronger determinants of cancer mutation profiles than chromatin features of matched cancer cell lines. Furthermore, we show that the cell type of origin of a cancer can be accurately determined based on the distribution of mutations along its genome. Thus, the DNA sequence of a cancer genome encompasses a wealth of information about the identity and epigenomic features of its cell of origin.
Polak et al. (2015) Nature. doi:10.1038/nature14221
Abstract.
   Active Motif products related to this paper:
         ChIP Products
         ChIP-Seq Validated Antibodies
 

February 2015

An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element
In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell’s transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase–binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.
Mansour et al. (2014) Science. doi:10.1126/science.1259037
Abstract.
   Active Motif products related to this paper:
         LightSwitch Luciferase Assay System
         ChIP-Seq Services
         ChIP-IT® High Sensitivity Kit
         Nuclear Complex Co-IP kit

CRL4VPRBP E3 Ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases
DNA methylation at the C-5 position of cytosine (5mC) regulates gene expression and plays pivotal roles in various biological processes. The TET dioxygenases catalyze iterative oxidation of 5mC, leading to eventual demethylation. Inactivation of TET enzymes causes multistage developmental defects, impaired cell reprogramming, and hematopoietic malignancies. However, little is known about how TET activity is regulated. Here we show that all three TET proteins bind to VprBP and are monoubiquitylated by the VprBP-DDB1-CUL4-ROC1 E3 ubiquitin ligase (CRL4VVPRBP) on a highly conserved lysine residue. Deletion of VprBP in oocytes abrogated paternal DNA hydroxymethylation in zygotes. VprBP-mediated monoubiquitylation promotes TET binding to chromatin. Multiple recurrent TET2-inactivating mutations derived from leukemia target either the monoubiquitylation site (K1299) or residues essential for VprBP binding. Cumulatively, our data demonstrate that CRL4VVPRBP is a critical regulator of TET dioxygenases during development and in tumor suppression.
Nakagawa et al. (2015) Molecular Cell. doi:10.1016/j.molcel.2014.12.002
Abstract.
   Active Motif products related to this paper:
         GelshiftTM Chemiluminescent Kit
         5-methylcytosine monoclonal antibody
         5-hydroxymethylcytosine polyclonal antibody
         5-formylcytosine polyclonal antibody
         5-carboxylcytosine polyclonal antibody

Developmental control of Polycomb subunit composition by GATA factors mediates a switch to non-canonical functions
Polycomb repressive complex 2 (PRC2) plays crucial roles in transcriptional regulation and stem cell development. However, the context-specific functions associated with alternative subunits remain largely unexplored. Here we show that the related enzymatic subunits EZH1 and EZH2 undergo an expression switch during blood cell development. An erythroid-specific enhancer mediates transcriptional activation of EZH1, and a switch from GATA2 to GATA1 controls the developmental EZH1/2 switch by differential association with EZH1 enhancers. We further examine the in vivo stoichiometry of the PRC2 complexes by quantitative proteomics and reveal the existence of an EZH1-SUZ12 subcomplex lacking EED. EZH1 together with SUZ12 form a non-canonical PRC2 complex, occupy active chromatin, and positively regulate gene expression. Loss of EZH2 expression leads to repositioning of EZH1 to EZH2 targets. Thus, the lineage- and developmental stage-specific regulation of PRC2 subunit composition leads to a switch from canonical silencing to non-canonical functions during blood stem cell specification.
Xu et al. (2015) Molecular Cell. doi:10.1016/j.molcel.2014.12.009
Abstract.
   Active Motif products cited in this paper:
         Suz12 polyclonal antibody
   Active Motif products related to this paper:
         ChIP-IT® ChIP-Seq Kit
         LightSwitch Luciferase Assay System
         EZH2 polyclonal antibody
 

January 2015

Acute depletion redefines the division of labor among DNA methyltransferases in methylating the human genome
Global patterns of DNA methylation, mediated by the DNA methyltransferases (DNMTs), are disrupted in all cancers by mechanisms that remain largely unknown, hampering their development as therapeutic targets. Combinatorial acute depletion of all DNMTs in a pluripotent human tumor cell line, followed by epigenome and transcriptome analysis, revealed DNMT functions in fine detail. DNMT3B occupancy regulates methylation during differentiation, whereas an unexpected interplay was discovered in which DNMT1 and DNMT3B antithetically regulate methylation and hydroxymethylation in gene bodies, a finding confirmed in other cell types. DNMT3B mediated non-CpG methylation, whereas DNMT3L influenced the activity of DNMT3B toward non-CpG versus CpG site methylation. Altogether, these data reveal functional targets of each DNMT, suggesting that isoform selective inhibition would be therapeutically advantageous.
Tiedemann et al. (2014) Cell Reports. doi:10.1016/j.celrep.2014.10.013
Abstract.
   Active Motif products related to this paper:
         Bisulfite Conversion kit
         Bisulfite Sequencing Services
         MeDIP kit
         hMeDIP kit

Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes
Gene expression is epigenetically regulated by a combination of histone modifications and methylation of CpG dinucleotides in promoters. In normal cells, CpG-rich promoters are typically unmethylated, marked with histone modifications such as H3K4me3, and are highly active. During neoplastic transformation, CpG dinucleotides of CG-rich promoters become aberrantly methylated, corresponding with the removal of active histone modifications and transcriptional silencing. Outside of promoter regions, distal enhancers play a major role in the cell type-specific regulation of gene expression. Enhancers, which function by bringing activating complexes to promoters through chromosomal looping, are also modulated by a combination of DNA methylation and histone modifications. Here we use HCT116 colorectal cancer cells with and without mutations in DNA methyltransferases, the latter of which results in a 95% reduction in global DNA methylation levels. These cells are used to study the relationship between DNA methylation, histone modifications, and gene expression. We find that the loss of DNA methylation is not sufficient to reactivate most of the silenced promoters. In contrast, the removal of DNA methylation results in the activation of a large number of enhancer regions as determined by the acquisition of active histone marks. Although the transcriptome is largely unaffected by the loss of DNA methylation, we identify two distinct mechanisms resulting in the upregulation of distinct sets of genes. One is a direct result of DNA methylation loss at a set of promoter regions and the other is due to the presence of new intragenic enhancers.
Blattler et al. (2014) Genome Biology. doi:10.1186/s13059-014-0469-0
Abstract.
   Active Motif products cited in this paper:
         H3K27ac polyclonal antibody
   Active Motif products related to this paper:
         ChIP-IT® ChIP-Seq Kit
         Bisulfite Sequencing Services
         H3K4me3 polyclonal antibody
         RNA pol II monoclonal antibody

H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors.
Fernandez et al. (2015) Genome Research. doi:10.1101/gr.169011.113
Abstract.
   Active Motif products related to this paper:
         Bisulfite Conversion kit
         Bisulfite Sequencing Services
         ChIP-Seq Services

 

December 2014

24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex
Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1-3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal cortex, and may be affected by age and Alzheimer's disease.
Lim et al. (2014) PLOS Genetics. doi:10.1371/journal.pgen.1004792
Abstract.
   Active Motif products related to this paper:
         ChIP-IT® ChIP-Bis-Seq Kit
         Bisulfite Conversion kit
         Bisulfite Sequencing Services
         ChIP-Seq Services

A comparative encyclopedia of DNA elements in the mouse genome
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
Yue et al. (2014) Nature. doi:10.1038/nature13992
Abstract.
   Active Motif products cited in this paper:
         H3K27me3 monoclonal antibody
         H3K27ac polyclonal antibody
         H3K9ac polyclonal antibody
   Active Motif products related to this paper:
         ChIP-IT® ChIP-Seq Kit

Structural basis for microRNA targeting
MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. We determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. These results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.
Schirle et al. (2014) Science. doi:10.1126/science.1258040
Abstract.
   Active Motif products related to this paper:
         miRNA Target IP Kit Kit
         Cas9 monoclonal antibody
 

November 2014

Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease
The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity.
Gilsbach et al. (2014) Nature Communications. doi:10.1038/ncomms6288
Abstract.
   Active Motif products related to this paper:
         ChIP-IT® ChIP-Bis-Seq Kit
         Bisulfite Conversion kit
         Bisulfite Sequencing Services
         ChIP-Seq Services

Application of histone modification-specific interaction domains as an alternative to antibodies
Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies.
Kungulovski et al. (2014) Genome Research. doi:10.1101/gr.170985.113
Abstract.
   Active Motif products cited in this paper:
         ChIP-Seq Services
         H3K27me3 polyclonal antibody
   Active Motif products related to this paper:
         MODified Histone Peptide Array
         ChIP-IT® ChIP-Seq Kit

Predicting the human epigenome from DNA motifs
The epigenome is established and maintained by the site-specific recruitment of chromatin-modifying enzymes and their cofactors. Identifying the cis elements that regulate epigenomic modification is critical for understanding the regulatory mechanisms that control gene expression patterns. We present Epigram, an analysis pipeline that predicts histone modification and DNDNA methylation patterns from DNDNA motifs. The identified cis elements represent interactions with the site-specific DNDNA-binding factors that establish and maintain epigenomic modifications. We cataloged the cis elements in embryonic stem cells and four derived lineages and found numerous motifs that have location preference, such as at the center of H3K27ac or at the edges of H3K4me3 and H3K9me3, which provides mechanistic insight about the shaping of the epigenome. The Epigram pipeline and predictive motifs are at http://wanglab.ucsd.edu/star/epigram/.
Whitaker et al. (2014) Nature Methods. doi:10.1038/nmeth.3065
Abstract.
   Active Motif products related to this paper:
         ChIP-IT® ChIP-Seq Kit
         H3K4me3 polyclonal antibody
         H3K4me1 polyclonal antibody
         H3K27me3 polyclonal antibody
         H3K27ac polyclonal antibody
 

October 2014

Histone H2A.Z subunit exchange controls consolidation of recent and remote memory
Memory formation is a multi-stage process that initially requires cellular consolidation in the hippocampus, after which memories are downloaded to the cortex for maintenance, in a process termed systems consolidation1. Epigenetic mechanisms regulate both types of consolidation, but histone variant exchange, in which canonical histones are replaced with their variant counterparts, is an entire branch of epigenetics that has received limited attention in the brain and has never, to our knowledge, been studied in relation to cognitive function. Here we show that histone H2A.Z, a variant of histone H2A, is actively exchanged in response to fear conditioning in the hippocampus and the cortex, where it mediates gene expression and restrains the formation of recent and remote memory. Our data provide evidence for H2A.Z involvement in cognitive function and specifically implicate H2A.Z as a negative regulator of hippocampal consolidation and systems consolidation, probably through downstream effects on gene expression. Moreover, alterations in H2A.Z binding at later stages of systems consolidation suggest that this histone has the capacity to mediate stable molecular modifications required for memory retention. Overall, our data introduce histone variant exchange as a novel mechanism contributing to the molecular basis of cognitive function and implicate H2A.Z as a potential therapeutic target for memory disorders.
Zovkic et al. (2014) Nature. doi:10.1038/ nature13707
Abstract.
   Active Motif products related to this paper:
         ChIP-IT® High Sensitivity Kit
         MeDIP kit
         H2A, C-terminal polyclonal antibody
         H2A.Z polyclonal antibody

Dopamine Signaling Leads to Loss of Polycomb Repression and Aberrant Gene Activation in Experimental Parkinsonism
Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.
Soderstenet al. (2014) PLOS Genetics. doi:10.1371/journal.pgen.1004574
Abstract.
   Active Motif products related to this paper:
         ChIP-IT® High Sensitivity Kit
         H3K4me3 polyclonal antibody
         H3K27me3 polyclonal antibody

K‐Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation
Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone‐modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K‐acetyltransferase 2a (Kat2a)—a HAT that has not been studied for its role in memory function so far—shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long‐term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation.
Stilling et al. (2014) EMBO Journal. doi:10.15252/embj.201487870
Abstract.
   Active Motif products related to this paper:
         ChIP-IT® High Sensitivity Kit
         GCN5 (KAT2A) monoclonal antibody
         H3K14ac polyclonal antibody
         H3K18ac polyclonal antibody
         H4K12ac polyclonal antibody