<< Back to Podcasts

Weiwei Dang headshot

H3K36me3, H4K16ac and Cryptic Transcription in Ageing (Weiwei Dang)

Episode 120

March 7, 2024

In this episode of the Epigenetics Podcast, we talked with Weiwei Dang from Baylor College of Medicine about his work on molecular mechanisms of aging and the role of H3K36me3 and cryptic transcription in cellular aging.

The team in the Weiwei Dang lab explored the connection between histone marks, specifically H4K16 acetylation and H3K36 methylation, and aging. Dr. Dang describes how the lab conducted experiments by mutating H4K16 to determine its effect on lifespan. They observed that the mutation to glutamine accelerated the aging process and shortened lifespan, providing causal evidence for the relationship between H4K16 and lifespan. They also discovered that mutations in acetyltransferase and demethylase enzymes had opposite effects on lifespan, further supporting a causal relationship.

Weiwei Dang then discusses their expanded research on aging, conducting high-throughput screens to identify other histone residues and mutants in yeast that regulate aging. They found that most mutations at K36 shortened lifespan, and so they decided to follow up on a site that is known to be methylated and play a role in gene function. They discovered that H3K36 methylation helps suppress cryptic transcription, which is transcription that initiates from within the gene rather than at the promoter. Mutants lacking K36 methylation showed an aging phenotype. They also found evidence of cryptic transcription in various datasets related to aging and senescence, including C. elegans and mammalian cells.


Watch videos from Chromatin-Con 2023: Epigenetics of Aging Meeting